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The estimation of the number of inert gas atoms contained at equilibrium in microscale bubbles in a solid
usually relies on a well-known formula equilibrating the internal pressure of He to the surface energy of
the bubble. This approach evidences a strong variation with temperature of He content for a given bubble.
At the opposite, at the Angstrom scale, ab initio calculations for He contained in vacancy assemblies
neglect temperature effects. In this work, empirical potential molecular dynamics simulations are used
to study, in the case of helium inserted in cubic silicon carbide, the variation of the He content of sub-
nanoscale cavities with temperature. To do so free energy for He atoms inserted in cavities made of a
few vacancies (up to 29) are calculated. One then evidences the existence of a sub-surface segregation
in interstitial sites close to the surface of the cavity. The variation of the He content with temperature
is observed to be negligible at the nanoscale, thus validating the ab initio approach.

� 2010 Elsevier B.V. All rights reserved.
1. Introduction

Silicon carbide (SiC) is known to have a good resistance to neu-
tron radiation damage [1,2] thanks to many desirable attributes for
high-temperature applications in a neutron radiation environment
such as high chemical and thermal stability, low activation and
high strength. For these and other reasons, SiC based materials is
considered for use in fusion energy systems as first wall or blanket
materials. When SiC is submitted to a high flux of energetic neu-
trons (14 M eV in the first wall of fusion reactor), transmutation
nuclear reactions and emergence of helium bubbles in SiC [1] are
observed. Several past studies have been carried out to examine
the behavior of He in SiC [2,3] and have permitted to understand
a lot of properties of these helium bubbles. However few of them
have precisely investigated the behavior of He gas in equilibrium
bubbles at finite temperature. Notably, it is very important to know
the number of helium atoms in an equilibrium bubble to deter-
mine such properties of SiC under irradiation as the release and
retention behavior of helium in these bubbles.

Experimentally, the determination of the number of He atoms
inside a bubble in a material usually rely on the well-known rela-
tionship [4,5] between the internal pressure of He in the bubble P
and the surface energy of the cavity r.

P ¼ 2r
R

ð1Þ
ll rights reserved.

bette).
for all radii R of bubbles which are assumed to be spherical. With
this pressure equilibration formula the number of gas atoms that
can be incorporated in a bubble hugely depends on temperature;
basically it is proportional to the inverse of temperature in the lim-
iting case of a perfect gas.

At the opposite, ab initio atomistic simulations can provide very
accurate energetic predictions [6–8]. But due to huge simulation
times, these simulations are restricted to extremely small cavities
made of less than about five vacancies. Moreover for the same
computational reasons, these calculations are restricted to zero
temperature.

Our goal in this work is to study the effect of temperature on the
number of He atoms in very small cavities. To do so we use empir-
ical potential Molecular Dynamics (MD) in which we deal the
quantitative accuracy of the ab initio calculation for the ability to
consider finite temperature effects. We are then able to calculate
the free energies of He atoms in the cavities and to compare them
with the free energy of He in the bulk of silicon carbide. Our idea
was to compare the free energies of He atoms inside the cavity
to their free energy in the bulk. The sign of the difference between
these two free energies indicates whether it is in a more favorable
situation in the bulk or in the cavity. Starting from only one He in a
cavity, we added one helium after the other in the cavity as long as
their free energy remains lower than in the bulk. As soon as it
would become larger one would have exceeded the number of
helium atoms at equilibrium in the given cavity. This procedure
assumed that all He atoms would remain inside the cavity. This
assumption proved wrong which sheds light on the actual behavior
of He atoms in and close to cavities.
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Table 2
Comparison between empirical potentials and ab initio [15] insertion energies and
activation energies of single helium in silicon carbide. Insertions energies (italic) have
been used for the fitting, the activation energies (regular type) have been used to
cross-check the quality of the potentials.
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We first describe the technicalities of this work and especially
the empirical potentials used in the study. We then focus on the
calculation of the free energy and spatial repartition of He atoms
inserted in sub-nanoscale cavities.
Energies (eV) Emp. Pot. Ab initio [15]

Eins.(TC) 2.70 2.71
Eins.(TSi) 1.51 1.51
Eins.(VC) 1.63 1.62
Eins.(VSi) 0.88 0.86
Eact.(TC ? TSi) 0.9 1.3
Eact.(TSi ? TC) 2.1 2.5
Eact.(VC ? TC) 0.8 0.6
Eact.(VSi ? TC) 0.5 0.4
2. Technicalities

2.1. Empirical potentials

SiC cohesion is described by a Tersoff–Brenner potential already
used in previous works on SiC thermal properties [9–12]. He–He
interactions are described by the well-known pair interaction de-
signed by Tang and Toennies [13] with enough terms in the disper-
sion series to assure a good convergence of the Born–Mayer
parameters. New He pair interactions with Si and C were derived
from ab initio calculations on the insertion sites of He in SiC [15].
As these potentials are yet unpublished we describe them in some
details. We have used a Lennard–Jones type pair potential for the
He–C interaction. Such an attractive potential has been chosen in
light of recent calculations [16]. The He–Si interaction is described
by a Buckingham potential. Both potentials read as follow:

vðHe—SiÞ ¼ A exp � rHe—Si

q

� �
ð2Þ

and

vðHe—CÞ ¼ A
r14

He—C

� B
r6

He—C

ð3Þ

The parameters of both potentials have been fitted on previ-
ously calculated ab initio data [15] on helium insertion energies
in vacancies (VSi and VC) and interstitials sites (TC and TSi) in silicon
carbide. The insertion energies Eins of helium (at 0 K) have been de-
fined by writing the following equation for interstitials (TC or TSi):

Hegaz þ nSiC! SinCnHeTC=TSi
ð4Þ

with

ETC=TSi
ins: ¼ EðSinCnHeTC=TSi

Þ � EðSinCnÞ � EðHegazÞ ð5Þ

The equations for vacancies read a similar way as:

Hegaz þ SinCn�1 ! SinCn�1HeVC=VSi
ð6Þ

with

EVC=VSi
ins: ¼ EðSinCn�1HeVC=VSi

Þ � EðSinCn�1Þ � EðHegazÞ ð7Þ

We have used in the fitting procedure the same 64 atom cells as
in ab initio calculations. The optimal set of parameters is given in
Table 1. The insertion energies of helium calculated with empirical
potentials (Table 2) reproduce quite well the ab initio data ob-
tained by Van Ginhoven et al. [15]. In order to cross-check the
quality of the present potentials for helium, we have calculated
the activation energies for interstitial helium migration and for he-
lium de-trapping from the vacancy sites (see Table 2). Again, the
empirical potentials agree well with the activation energies for
migration obtained with ab initio data, the difference between
the empirical potentials and the ab initio data lying around 20%.
Table 1
Parameters of the pair potential interaction for He–C et He–Si fitted to the ab initio
insertion energies calculated by Van Ginhoven et al. [15].

A (eV Å [14]) B (eV Å [6])

He–C (Lennard–Jones) 6333.435553 23.842031

A (eV) q (Å)

He–Si (Buckingham) 14.647429 0.547926
2.2. Generation of the cavities and insertion of He atoms

Our crystal structure is bSiC (cubic). We considered series of
spherical vacancy aggregates centered on a silicon atom. Each
aggregate can be denoted by the number of atoms that were re-
moved or by the radius of the associated cavity (quoted Rc) which
we define as the distance between the center and the closest
remaining atom. The helium atoms are inserted in the cavities
along a face-centered cubic network starting from the center and
adding additional shells of atoms. This initial He atomic structure
is systematically quenched and then thermalized for a few ten
pico-seconds. Constant temperature calculations are performed
thanks to a Langevin thermostat.

2.3. Methodology of free energy calculation

To calculate the free energies of He atoms in vacancy aggregates
and in interstitial positions, we use an usual disintegration proce-
dure [17], that we recall below.

The interaction of a selected helium atom with all the other
constituents is reduced at each time step of the MD simulation
(thus creating, step by step, a ‘‘ghost” atom of helium which is,
in our situation, tantamount to disintegrate this atom). If the he-
lium atom is disintegrated slowly (the rate of disintegration is
small), the surrounding atoms are not much affected at each step:
the transformation is then quasi-static (or reversible). In such
transformation, during a step of disintegration we can assume that
there is no creation of entropy (dScreated = 0). So we have:
dS = dSexchanged (dSexchanged is the entropy which is exchanged with
the thermostat during a step), which gives:

dU ¼ dF þ TdSexchanged ¼ dF þ dQreversible ð8Þ

where dQreversible is the little variation of heat during the reversible
transformation. Yet, the variation of internal energy during a revers-
ible reaction is given by:

dU ¼ dQ reversible þ dWreversible ð9Þ

From (8) and (9), we get:

DF ¼
Z

dWreversible ð10Þ

where the integral proceeds along the disintegration path. This inte-
gral is equal to the free energy of the disintegrated atom. Thus, dur-
ing each MD step, we determined the work generated by the
reduction of the interactions. And finally, the integration of the work
along the disintegration path gives us the free energy of the removed
helium. The quality of the procedure depends on the slowness of the
disintegration. The slower the disintegration, the better the approx-
imation of chemical potential, because dScreated tends towards 0. At
the opposite, if the disintegration rate is too high, the system is
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greatly disturbed and the error on the free energy cannot be ne-
glected (dScreated being not negligible).

It is worth noting that drawbacks are known for the present
disintegration procedure. Indeed it is known that disintegra-
tion–insertion procedures (such as the Widom procedure or the
path sampling procedure) are more accurate [17,18]. However
we chose not to use these more involved methods for two rea-
sons. First, these procedures are generally heavier as they include
series of insertions and disintegrations and we are in the present
paper only interested in qualitative trends that we believe are
obtained with a simple disintegration procedure. Second, our
case is somehow particular as we are interested in the free en-
ergy of He atoms inside a specific portion of the simulation box
(i.e. the cavity) and not on the chemical potential of He in the
whole box, as it is usually the case in free energy calculations.
If series of disintegration–insertion of an He atom are performed,
it is not possible to guarantee that this atom is reinserted in the
right portion of the box and one end up with the chemical poten-
tial of the He atom in the whole box which is not what we are
interested in.

In practice the disintegration is performed in 20 000 iterations
of .2 fs each, i.e. in 4 ps. Such fast disintegrations proved enough
to get the qualitative trends we are interested in.
Table 3
Free energy of an He atom in tetrahedral interstitial position surrounded by Si (TSi) or
C (TC) atoms.

He free energy (eV) TSi TC

300 K 1.59 2.72
1000 K 1.68 2.88
2500 K 2.12 Unstable

Fig. 1. Free energies of He atoms inserted in sub-nanoscale cavities made of 1, 5, 17 and 2
the inserted helium atoms. Dashed horizontal lines indicate He free energy values in th
3. Results

3.1. Free energy of He atom in interstitial sites

To compare the free energies of He atoms in the cavities with He
in the bulk of SiC, we first calculated the free energies of interstitial
He in two possible sites: the tetrahedral sites surrounded by Si or C
atoms (TSi and TC respectively). The values of the free energies for
these two sites at 300 K, 1000 K and 2500 K temperatures are given
in Table 3. Two points are worth noting. First the silicon interstitial
site is the most stable site at all temperature in agreement with
what was calculated at 0 K (see above part I.). Second, at 2500 K
the carbon interstitial site is unstable in the sense that the inserted
helium atom quickly moves from this site to a neighboring silicon
interstitial site.

The difference in free energy between the position in the bulk
and in the cavity is therefore:

d ¼ FHe
bubble � FHe

TSi
ð11Þ

if d < 0, helium atoms are in an energetically favored position in the
cavity; if d > 0, helium atoms are in an energetically un-favored po-
sition in the cavity; d = 0 corresponding to a perfect energetic equi-
librium between He atoms in the cavity and in interstitial positions
in the bulk.

3.2. Free energy of He atoms inside nanoscale cavities

We had to restrict to extremely small cavities due to computa-
tion limitations. Indeed a somewhat large dispersion of the ob-
tained free energies is observed (see Figs. 1–3). Therefore one has
to calculate the free energy of every He atom in a cavity, i.e. per-
form independent disintegrations of every He atom. This of course
9 vacancies at 300 K, 1000 K and 2500 K. Continuous lines indicate the averages over
e bulk (in the TSi site).



Fig. 2. Distance from bubble center and free energy of 1 (resp. 2, 3, 4, 5, 6) He atoms
in a mono-vacancy cavity at 300 K: circle (resp. squares, diamonds, crosses,
triangles and stars). The horizontal line indicates the free energy of an He atom in a
bulk Si-interstitial site. The vertical line indicates the border of the cavity.

Fig. 3. Distance from bubble center and free energy of 1 (resp. 10, 20, 30) He atoms
in a 17 vacancy cavity at 1000 K: circle (resp. diamonds, squares, triangles). The
horizontal line indicates the free energy of an He atom in a bulk Si-interstitial site.
The vertical line indicates the border of the cavity.

Table 4
Equilibrium number of He atoms in sub-nanocavities (see text for details). Numbers
in regular type (resp. italics) indicate that the estimation is based on Nd!0

inside (resp.
Nmax

inside).

NVac Radius (nm) Equilibrium number of He atoms

300 K 1000 K 2500 K

1 0.186 4 3 3
5 0.303 6 5 7

17 0.355 23 24 22
29 0.428 34 35 37
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strongly limits the number of He one can consider. In this part, cav-
ities made of 1, 5, 17 and 29 vacancies (centered on a Si atom) are
considered. For each cavity up to Nmax

inserted = 6, 10, 30 and 43 He
atoms are inserted, respectively, i.e. all possible numbers of He
atoms in the bubble from 1 to Nmax

inserted were considered. In each case
the box is thermalized and then the free energy of every He atom is
calculated. Three temperatures were considered: 300, K, 1000 K
and 2500 K. All in all that amounts for each cavity to 3� Nmax

inserted

MD thermalization runs and 3� Nmax
inserted � ðN

max
inserted � 1Þ=2 MD dis-

integrations runs to calculate the free energies.
Before tackling the values of the free energies, we shall expose

the spatial repartition of the He atoms after relaxation at the var-
ious temperatures. When very few He atoms are inserted in the
cavities they all remain inside the bubble far from its border. Upon
accumulation He atoms start to get further away from the center.
It proves quite difficult to properly define the interior of the bubble
or its border. In lack of a better definition, we chose, by conven-
tion, to flag an He as gone out of the cavity when its distance from
the center exceeds (at the end of the thermalization run) the ra-
dius of the cavity Rc (as defined above except for the five vacancy
cavity where the common definition of the radius proves inappro-
priate and Rc is reduced by 0.02 nm). With this definition one ob-
serves that beyond a certain amount of inserted He, not all of them
remain inside the cavity and some are ejected outside of it (see
Figs. 2 and 3). We found that the number of He atoms that remain
inside the cavity after thermalization clearly saturates. We note
Nmax

inside this maximum number of He atoms that remain inside the
cavity.
Turning now to the calculated values of the free energies, one
first observes a somewhat large spread of the values. However
one satisfactorily obtains, as expected, that the average He free
energies in the cavities (lines in Fig. 1) increases with the amount
of He in the cavities as well as with temperature.

When few He atoms are inserted, their free energy proves much
lower than the reference free energy of He in interstitial bulk posi-
tions. Upon accumulation of He atoms in the cavity, the average
free energy increases. In most cases the first He ejection from the
cavity takes place while all He atoms still have a lower free energy
than in the interstitial sites (see Figs. 2 and 3). Ejection thus takes
place before the free energy of He atoms inside the cavity reaches
the value experienced by He interstitials in the bulk. Further accu-
mulation of He atoms leads to an increase of their free energies, be
they inside or outside the cavity. The free energies get closer and
closer to the bulk values. In some cases we considered large en-
ough amounts of inserted He atoms to reach the point where the
free energy of one or many He atoms do reach the bulk interstitial
value. These first He atoms having a higher free energy than in the
bulk may be either in the cavity or outside it. In this last case fur-
ther accumulation is needed to possibly reach the point where an
He atom inside the cavity exhibits a higher free energy than the
bulk reference. At this point the number of He inside the cavity
has exceeded its equilibrium value. We then denote Nd!0

inside, the
maximum number of He atom inside the cavity for which none
of them has a higher energy than the bulk reference. Nd!0

inside is the
number of He atoms in the cavity when equilibrium is set between
the bubble and the bulk.

We thus have two ways of estimating the number of He atoms
in the bubble at equilibrium. First when enough He atoms were in-
serted to reach the inversion of equilibrium between inside the
bubble and in the bulk, one has access to Nd!0

inside which is the correct
measure of the equilibrium number of He in the bubble. Second
even when this inversion point is not reached one still observes
an overall saturation of the number of He atoms that remain inside
the bubble to the Nmax

inside value. Using Nd!0
inside when available and

Nmax
inside in the other case we indicate in Table 4 the maximum num-

ber of He atom that can be accommodated in a bubble as a function
of temperature and size of the cavity.
4. Discussion

Before discussing our results we should remind the reader that
we are primarily interested in the number of He atoms that would
sit inside a cavity if the full thermodynamical equilibrium was
achieved. In reality such equilibrium is very difficult to achieve
and kinetic factors (such as the diffusion of He atoms from the bulk
to the cavities) affect the number of He atoms in a cavity. We do
not tackle in this paper these kinetic factors, as we restrict our-
selves to the pure thermodynamical equilibrium.

The free energy calculations allow us to further discuss the
behavior of He atoms inside cavities in SiC. The initial assumption
behind these calculations was that upon accumulation of He
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atoms inside a bubble, their free energies would increase up to
reach the value experienced by He interstitials in the bulk at
which point the bubble would have reached its equilibrium He
content. Calculations have shown the actual situation to be more
complex. First the implicit assumption that He atoms would al-
ways remain inside the bubble proves wrong. For a certain
amount of He atoms inside the bubble some are ejected outside
of it. The first He atoms pushed away from the bubble end up
in interstitial sites close to the surface in which they have a lower
free energy than in the bulk. Upon accumulation of He, these
interstitial sites close to the surface get more and more occupied
and their free energies rise. This difference in free energy of inter-
stitial sites close to the cavity with respect bulk interstitial sites
relates to a sub-surface segregation process making the intersti-
tial sites close to the surface energetically favorable compared
to the bulk sites. The chemical interactions of He with its sur-
roundings being weak, this shift in energy is mainly due to elastic
effects related to the local dilatation of the SiC lattice close to the
surface of the cavity. Indeed we checked that interstitial He atoms
in dilated crystal structures exhibit a lower free energy than at
equilibrium volume.

The existence of this sub-surface segregation complicates the
picture of equilibrium between an He bubble and bulk interstitials.
Indeed, equilibrium between the bubble and bulk interstitials is
achieved when the free energies of He atoms are equal throughout
the system which implies that:

– He atoms inside the bubble should have a free energy equal to
the reference bulk value;

– He atoms outside but close to the bubble should also have the
same free energy.

This last condition is achieved with a higher local concentration
of He atoms close to the surface than in the bulk. One would finally
get a concentration gradient from the surface of the bubble to the
bulk with higher concentrations at the surface side. Present calcu-
lations show hints of the existence of this concentration gradient at
full equilibrium and evidence that the He content associated with a
cavity includes not only He atoms inside the bubble but also those
segregated in the material close to the cavity. However the precise
determination of this concentration gradient goes far beyond the
scope of the present paper. In particular simple thermodynamical
arguments prove that the concentration gradient should be more
intense close to smaller cavities than in the vicinity of larger cavi-
ties (this is the Gibbs–Thompson effect). Unfortunately we were
unable to find clear evidence of this phenomenon.

We now come back to the effect of temperature on the amount
of He that can be accommodated in a given bubble. Our calcula-
tions show clearly that for low amount of He atoms, the free energy
of He atoms in a bubble is increasing with temperature. However
the number of He inside a bubble at equilibrium with the bulk is
remarkably constant with temperature for these very small cavi-
ties (Table 4).

5. Conclusion

In this paper we have studied from the thermodynamic point of
view the equilibrium of He in sub-nanoscale cavities in SiC by cal-
culating free energies for He atoms vacancy aggregates. This high-
lighted the existence of a sub-surface segregation in interstitial
sites close to the surface of the cavity. The He content associated
with a cavity therefore includes not only He atoms inside it but
also those segregated in the material close to it.

Finally, the number of helium in sub-nanoscale cavities is al-
most independent from temperature which confirms the relevancy
of the ab initio approaches which neglect the temperature effect
for sub-nanoscale cavities.
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